Cambridge EnerTech主催

High-Performance Battery Manufacturing
( 高性能電池の製造 )

安全・効率的でエネルギー密度の高い電池の国際的な生産

2023年3月21 - 22日



製造工程の進歩は、高性能電池の活用領域の拡大を促す材料となるでしょう。製造工程の部会では、電池製造の国際的な動向を紹介し、世界各地のバリューチェーン全体のステークホルダーに対して、アジア・欧州・米国における最新のイノベーションを提示します。組立・自動化・効率化・検査手法・コスト削減に対する最新のアプローチの発表を通じて、世界の電池エコシステム全体に関する有益な情報が得られます。会議の参加者は、世界各地の製造工程の現状について重要な知識を得て、誰が将来の電池製造の主導権を握るのかを理解することができます。

3月20日(月)

- 4:45 pm Conference Tutorials8:00 am

Choose from 16 tutorials to maximize your networking and educational opportunities

3月21日(火)

Registration and Morning Coffee7:00 am

OEM PERSPECTIVES ON BATTERY MANUFACTURING
電池の製造工程に対するOEMの見解

8:05 amOrganizer's Remarks

Craig Wohlers, Executive Director, Conferences, Cambridge EnerTech

8:10 am

Chairperson's Remarks

Kevin Gallagher, PhD, Advanced Battery Cell Technology Manager, Corning, Inc.

8:15 am

Simulation and Modeling for Improvement of the Battery Manufacturing Process

Elham Honarvar, PhD, Cell Formation Engineer, Advanced Technology, Ford Motor Co

Simulation and modeling can be employed to replace time-consuming and costly experiments with inexpensive and efficient CAE simulation. Modeling can significantly improve the li-ion battery manufacturing process, especially in the formation & aging process which is one of the most expensive and time-consuming processes in the Li-ion manufacturing process.

8:45 am

Develop Suitable Battery Manufacturing Technologies for TWh Scale

Hailong Ning, PhD, Head of Battery Manufacturing Technology and Engineering, Nio

Here I will talk about NIO's battery and manufacturing technology roadmap. In particular, I will discuss key considerations and further improvements that can be made for building battery factories of giga-scale and beyond.

9:15 am

Next-Gen Battery Cell Manufacturing

Shubro Biswas, Senior Cell Electrode Engineer, Cell Engineering, Rivian

Grand Opening Refreshment Break in the Exhibit Hall with Poster Viewing9:45 am

GLOBAL MARKET OPPORTUNITIES IN BATTERY MANUFACTURING
電池の製造工程に関する国際的な市場機会

10:30 am

Preparation for the Near Future: Market & Technical Planning of the Asian xEV LIB Manufacturers in 2025

Mark H.L. Lu, PhD, Senior Industrial Analyst, Industrial Economics & Knowledge Center, Industrial Technology Research Institute

The global automobile industry has established a long-term trend toward electrification technology, attracting industry chain manufacturers to rush to invest. The Asian battery manufacturers plan to respond a series of challenges like to balance of supply and demand on cellmaking and materials side, ensure the source of mineral and all materials and technical competition between Japanese, Korean and Chinese manufacturers. This presentation will provide an overview of the above cellmakers’ planning, especially cover both the technical comparison, market and product segmentation to show the future development in Asian xEV LIB Manufacturers.

ADVANCES IN CELL MANUFACTURING
セルの製造手法の進歩

11:00 am

The Innovative Technology Development of EVE 4695 Cylindrical Cell

Like Xie, PhD, CTO, EVE Energy North America

EVE started to develop cylindrical cell models in 2001. Today EVE has become one of the leading cell suppliers in primary & 18650 cylindrical cell market. Through the integration of advanced materials, innovative structure design, and extreme production efficiency, EVE has successfully developed a series of 46XX cylindrical cells with high energy density, fast charging, excellent reliability, and low cost products for electrical vehicles applications.

11:30 am

New Markets and New Electrochemistry at Saft

Jacob Nykaza, PhD, Research Scientist, SAFT America

Saft will present the progress of Lithium Manganese Iron Phosphate cathodes (LMFP) development including performance, life, and abuse results from cylindrical, prismatic, and pouch cells which are commercialized for defense, aerospace, and industrial applications. Saft will also give an update on the use of gel polymer electrolytes to further increase cell safety. Finally, cell designs to improve fast charging will be shown.

12:00 pm Presentation Title to be Announced

Chao Yan, PhD, CEO and Founder, Princeton NuEnergy

Networking Luncheon12:30 pm

Dessert Break in the Exhibit Hall with Poster Viewing1:15 pm

PLENARY KEYNOTE PROGRAM
全体基調講演

1:45 pm

Organizer's Remarks

Craig Wohlers, Executive Director, Conferences, Cambridge EnerTech

1:50 pm PANEL DISCUSSION:

Delivering on Global Demand: Overcoming the Obstacles to Success

PANEL MODERATOR:

Pam Thomas, Professor, CEO, Faraday Institution

This international panel of the key OEMs, Battery Manufacturers, Raw Materials Providers, and Investment and Institutional Experts will take a deep dive into how the international battery community will deliver on the surging global demand for EVs. Addressing how the industry will achieve the volumes predicted is a key component to the success or failure of adoption of EVs around the world. The many issues that need to be addressed will include improvements needed to the supply chain, manufacturing capacity, mining, recycling methods, and regulatory compliance. The global battery industry is at a very important crossroads now that market demand has arrived. Will the industry be able to deliver? This unprecedented assembly of global experts will answer those questions and provide insight into the pathway forward.

PANELISTS:

Martin Winter, PhD, Director & Professor, Electrochemical Energy Technology, University of Muenster

David Howell, Program Manager, Acting Director, Office of Vehicle Technologies, United States Department of Energy

Glen Merfeld, Vice President & CTO, Lithium, Albemarle Corporation

Susanne Bjarsvik, Vice President, Battery Cell Process & Manufacturing Engineering, Stellantis

Mark W. Verbrugge, PhD, Director, R&D Chemical & Materials Systems Lab, General Motors Company

Stefan Pototschnik, Manager, HV Battery Cell Application Engineering, Ford

Gerardo Ramos Vivas, Battery Lifecycle Solutions Senior Manager, Toyota Motor North America

Bill Norman, Executive Director, BYD Auto

3:30 pmTransition to Sessions

ADVANCES IN CELL MANUFACTURING
セルの製造手法の進歩

3:40 pm

Chairperson's Remarks

Jacob Nykaza, PhD, Research Scientist, SAFT America

3:45 pm

From Automation to Smart Automation Using MES in Lithium-ion Gigafactories

Henry Mao, PhD, CEO, Youlion Battery Ltd.

High volume production of lithium-ion battery cells requires highly complicated manufacturing systems with manifold processes, interdependencies and high sensitivity to machine errors. This complexity makes these systems hard to control and regulate economically, yet at the same time product quality, cost, yields and energy demands must be met. MES (Manufacturing Execution System) is a powerful tool to meet these challenges. MES has a holistic understanding of the production system, and controls all processes through data collection and evaluation of all involved equipment. It coordinates the process interactions within the production chain. This presentation will provide an overview and introduction to the use of MES in high-volume lithium ion battery manufacturing.

4:05 pm

R&D Frontiers for Lithium Ion Manufacturers

Hang Shi, PhD, CTO, Reliance New Energy Group, India

This presentation will provide an overview on current most active r&d areas in lithium ion manufacturing. It will cover multilayer coating, LMFP mixing with NCM and LFP and potential prelithiuation innovations.

4:25 pm

Ribbon Ceramics Materials for Lithium Metal Batteries

Kevin Gallagher, PhD, Advanced Battery Cell Technology Manager, Corning, Inc.

Corning has developed a continuous roll-to-roll process for the manufacture of thin oxide-ceramics (10-100 um) called ribbon ceramics. Complementary to the production of traditional oxides such as alumina and yttria-stabilized zirconia, Corning has focused research and development on solid-state materials for next-generation lithium-metal-based battery cells. The talk will highlight work on solid electrolyte separators based on Garnet (LLZO) as well as a free-standing, sintered-cathodes.

4:45 pm

Overview of FREYR's US Project and its Supply Chain Strategy in the US

Sachiya Inagaki, Vice President, Battery Material Supply Business, FREYR Battery Norway AS

FREYR has released to set up JV battery plant in the US together with Koch Industry. Our target is to create 50GWh battery capacity by 2030. I will update this US project and explain how we think as to battery supply chain in the US.

Reception in the Exhibit Hall with Poster Viewing5:15 pm

INTERACTIVE ROUNDTABLE DISCUSSIONS
インタラクティブ・ラウンドテーブル・ディスカッション

6:30 pmInteractive Roundtable Discussions

Roundtable discussions are informal, moderated discussions with brainstorming and interactive problem-solving, allowing participants from diverse backgrounds to exchange ideas and experiences and develop future collaborations around a focused topic.

TABLE 1: Battery Raw Materials Supply Chain
Moderator: Robert M. Privette, Manager, Business Development, Rechargeable Battery Materials North America, Umicore USA, Inc.

TABLE 2: Li-ion NMC Fast Charging New Cells for E-Mobility
Moderator: Shmuel De-Leon, CEO, Shmuel De-Leon Energy Ltd.

TABLE 3: Li-ion Battery Safety: Prediction, Prevention, Levels and Legalities
Moderator: John Zhang, PhD, Senior Technology Executive Officer, Asahi Kasei SSBU Polypore, Celgard LLC

TABLE 4: Electrolyte Developments: New Components and Approaches
Moderator: Sam Jaffe, Vice President, Battery Solutions, E Source

TABLE 5: Battery Pack System Cost and Safety - Will Future xEV Battery Packs Increase in Complexity or Simplify and How Will Cost and Safety Be Impacted?
Moderator: Kevin Konecky, Battery and Energy Storage Systems Consultant, Total Battery Consulting

TABLE 6: Innovations in Recycling Battery Materials & Second Life
Moderator: Steven E. Sloop, President, OnTo Technology LLC

TABLE 7: Battery Management Systems
Moderator: Sheldon Williamson, PhD, Professor & Canada Research Chair, Electrical & Computer & Software Engineering, University of Ontario Institute of Technology

TABLE 8: Regulatory Initiatives & Transportation Safety
Moderator: Mike Pagel, Senior Consultant, Hazmat Safety Consulting

TABLE 9: Fire Safety Response
Moderator: Michael O'Brian, CEO, Code Savvy Consultants and Fire Chief, Brighton Area Fire Department

TABLE 10: Multi-Scale and Multi-Physics Modeling
Moderator: Lin Liu, PhD, Associate Professor, Mechanical Engineering, University of Kansas

TABLE 11: Using Synchrotron Tools to Build the Batteries of the Future at Canadian Light Source
Moderator: Jigang Zhou, PhD, Senior Industrial Scientist, Industry Services, Canadian Light Source, Inc.

TABLE 12: Safety in Transporting End of Life or DDR Batteries
Moderators: Joshua Davis, Scientist, U.S. Department of Transportation and Andrew Leyder, Program Analyst, Research, Development & Technology, U.S. Department of Transportation

TABLE 13: Requirements for Comprehensive Physical Characterization of Electrodes and Separators
Moderator: Martin Thomas, PhD, Lead Scientist, Product Competence, Anton Paar QuantaTec

TABLE 14: Energy Storage for the Grid
Moderator: Susan Babinec, Program Lead, Stationary Storage, Argonne Collaborative Center for Energy Storage Science (ACCESS), Argonne National Laboratory

Close of Day7:15 pm

3月22日(水)

Registration and Morning Coffee7:25 am

INNOVATION AND DESIGN FOR MANUFACTURING
製造工程のイノベーションとデザイン

7:55 am

Chairperson's Remarks

Sachiya Inagaki, Vice President, Battery Material Supply Business, FREYR Battery Norway AS

Breakfast Opener - Sponsorship Opportunity Available8:00 am

8:30 am

In situ Analytical and Spectroscopic Characterizations of the Electrode-Electrolyte Interfacial Chemistry in Lithium-ion Batteries with Next-Generation Electrodes

Bertrand Tremolet de Villers, PhD, Research Scientist, Process Science and Engineering Group, Chemistry and Nanoscience Center, National Renewable Energy Laboratory

First, materials characterization techniques (SEM-EDS, XRD) were used to explore the effect ultrafast laser ablation had on the electrode materials’ morphology and structure. Next, the improvements in the patterned electrodes’ electrochemical cycling performances and degrees of wetting will be compared to a pristine baseline case. Finally, the correlation between experimentally obtained data and model predictions will be presented and discussed.

9:00 am

Earth-Abundant Cathode Active Materials: Research and Development Efforts at Argonne National Laboratory

Jason Croy, PhD, Group Leader, Materials Research Group, Electrochemical Energy Storage, Argonne National Lab

The United States Department of Energy has recently released its vision for the future of batteries in the United States, titled The National Blueprint for Lithium Batteries. This document outlines the key areas of investment most critical to enabling a more secure and independent ecosystem around lithium-based batteries for the U.S. and is heavily influenced by the ideas of sustainable technological development. In this regard, earth-abundant cathode active materials are particularly attractive. This presentation will explore research and development efforts at Argonne National Laboratory focused on enabling new designs in high Mn, low Ni, Co-free cathodes towards diversifying the portfolio of viable materials for commercial applications.

9:30 am Can Domestic Production of Battery Material be Cost Competitive?

Thanh Nguyen, Senior Vice President, Deployment, 6K Energy

Domestic battery material production is necessary to secure our supply chain for the demand of batteries for the growth of the EV market. Questions to ask are: Can it be done in a cost-effective way? Can it be done sustainably and with low environmental impact? Is there a technology that can cost-effectively upcycle old battery cathode material into new modern cathode material and is it a sustainable process?

Coffee Break in the Exhibit Hall with Poster Viewing10:00 am

10:45 am Optimized Execution Strategy for the Design and Construction of Battery Chemical and Cell Manufacturing Facilities

Jacob Matly, Global Director, Battery Cell Manufacturing, Metals, Hatch

A battery chemical or cell manufacturing facility is often designed and constructed in two parts. The process is engineered by a technology supplier with vendor support. The building, utilities and infrastructure is designed by a third-party.  A general contractor is appointed to assemble the facility using multiple suppliers. This results in many engineering and construction coordination challenges for the project. An alternative delivery model is reviewed to address these challenges. 

11:15 am Battery Technology Solutions - From Lab to Line!

Christopher Burnett, Senior Applications Manager, Thermo Fisher Scientific

Co-Presenter to be Announced

Learn how Thermo Fisher Scientific technologies can help to solve your challenges - whether in the lab or on the production line. Our solutions and technologies touch every part of battery manufacturing, from the extraction and processing of raw materials, to quality assurance in the production line, to the research and development of the next generation of batteries. 

11:45 am

Battery Power for Electric Aviation

George M. Cintra, CTO, R&D, EaglePicher Technologies LLC

Electrifying aerospace propulsion is considered a key strategy to reduce environmental impact from aviation as well as improve fuel efficiency. A core technical challenge is achieving the necessary specific power and energy density to meet the demanding requirements for new electric vertical take-off and landing vehicles (eVTOL’s) and hybrid-electric systems, as well as delivering safe and reliable Li-ion cells and battery systems to meet rigorous governmental regulations. This presentation will discuss advancements in materials and cell architectures designed to meet the current and future requirements for this rapidly growing segment, including impacts of design choices, manufacturing, and implementation.

12:15 pm How Laser Monitoring and Artificial Intelligence (AI) Represent the Next Frontier in Laser Welding of Battery Modules

Michael Leiber, Regional Sales Manager, E-Mobility and Battery Solutions, Manz USA, Inc.

One key topic in battery module manufacturing is the quality of the laser welds of the current collectors to the single cells. From throughput, yield, cost to safety, maintenance and reliability, the understanding of the laser weld quality and how to improve the process are key topics. We will show how successful we have been in integrating both the laser welding monitoring and AI on our BLS500 laser welding system.

12:30 pm Using Polymer Matrix vs Carbon Matrix to Unlock the Full Potential of Silicon in Li-ion and Solid Electrolyte Batteries

Jeff Norris, CEO, Paraclete Energy, Inc.

Jeff Norris, CEO of Paraclete Energy, will demonstrate how a polymer matrix can cost-effectively leverage the high-capacity of silicon to build cycle-stable Li-ion and Solid Electrolyte Batteries, while also providing a disruptive range for EVs.

Networking Luncheon (Sponsorship Opportunity Available)12:45 pm

Dessert Break in the Exhibit Hall with Poster Viewing2:15 pm

PLENARY KEYNOTE PROGRAM
全体基調講演

2:45 pm

Organizer's Remarks

Craig Wohlers, Executive Director, Conferences, Cambridge EnerTech

2:50 pmShep Wolsky Battery Innovator of the Year Award Presentation
3:00 pm KEYNOTE PRESENTATION:

If a Lithium-ion Cell Can Operate for More Than 6 Months at 85°C How Long Can It Last at Ambient Temperature?

Jeff Dahn, FRSC, PhD, Professor of Physics and Atmospheric Science, NSERC/Tesla Canada Industrial Research Chair, Canada Research Chair, Dalhousie University

In a few of our recent papers, we have presented Li-ion cell designs with liquid electrolytes that give astounding lifetime at temperatures as high as 85°C. In fact, we have been testing these cells now at 100°C and they are operating well for more than one month so far. I will discuss what is required to make such awesome cells and then consider what their lifetime at ambient temperature might be. I will show that the energy density of these cells is very reasonable and that Co-free moderate-nickel designs also work equally well.

3:30 pm KEYNOTE PRESENTATION:

Next-Generation Batteries - An Update on Li Metal Battery and All Solid-State Battery 

Shirley Meng, PhD, Professor, University of Chicago; Chief Scientist, Argonne Collaborative Center for Energy Storage Science, Argonne National Laboratory

With the recent success in deploying lithium-ion batteries for light-duty passenger cars, it is time for researchers and scientists to work on a road map of next-generation batteries beyond lithium-ion. In this talk, I will give an update on the current status of research efforts in enabling lithium metal batteries and all solid-state batteries. A few cutting-edge scientific tools will be introduced, including X-ray CT, Cryo-EM, Titration GC, and more, all aimed at quantitative understanding of the failure mechanisms of next-gen batteries.

Refreshment Break in the Exhibit Hall with Poster Viewing4:00 pm

Close of High-Performance Battery Manufacturing Conference4:30 pm

* 不測の事態により、事前の予告なしにプログラムが変更される場合があります。