KF HEader Logo
Lithium Battery Power & Battery Safety 2016
-リチウム電池会議および電池安全性会議、2016年-
開催地:米国メリーランド州ベセスダ、Hyatt Regency Bethesda
開催日:2016年11月1 - 4日

Cambridge EnerTech傘下Knowledge Foundation主催、第12回
Lithium Battery Power 2016(リチウム電池会議)
化学、材料、モデリングの分野における進歩
2016年11月1日 - 2日|Hyatt Regency Bethesda|米国メリーランド州ベセスダ

アジェンダ

電池用の新たな化学技術、電極と電解質の材料、大容量のカソードとアノード、システム統合などの分野における飛躍的な進歩により、自動車、可搬型機器、据置型システムなどの分野で電池の用途が大きく広がっています。リチウムイオン電池を利用したエネルギー貯蔵技術の研究面と設計面の重要な技術革新は、安全性や信頼性の向上という点での重要な成果と相まって、この技術を最先端の領域へと押し上げています。

11月1日 (火)

7:30 登録手続き、コーヒー

8:30 主催者代表による歓迎の挨拶

Craig Wohlers, Executive Director, Conferences, Knowledge Foundation, a Division of Cambridge EnerTech

8:35 議長による開会の挨拶

Daniel Abraham, Ph.D., Engineer, Chemical Sciences and Engineering, Argonne National Laboratory


8:45 基調講演:自動車業界向けのリチウムイオン電池−材料から車両電動化までの多様な領域における主要課題

K_RaghunathanK Raghunathan, Ph.D., Battery Systems Engineer, General Motors

GM has developed tools for assessing advanced electrode materials and cell designs. The tools integrate material properties, cell fabrication constraints, and vehicle requirements to estimate cell energy density, specific energy, and power-to-energy ratio. Key challenges to implementing battery technology in vehicles and GM perspectives about these challenges will be presented.

各種の用途と市場

9:30 米国エネルギー省エネルギー高等研究計画局 (ARPA-E) :エネルギー貯蔵に関するニーズへの対応を目的としたハイリスクハイリターンアプローチへの投資

Sue_BabinecSusan Babinec, Senior Commercialization Advisor, ARPA-E, U.S. Department of Energy

This presentation highlights ARPA-E's Technology-to-Market efforts, which focus on preparing breakthrough energy technologies for the transition from lab to market.


10:00 新たな進化の出発点に立つエネルギー貯蔵技術:リチウムイオン電池以降の技術

George_CrabtreeGeorge Crabtree, Ph.D., Director, Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory & Distinguished Professor of Physics, Electrical and Mechanical Engineering, University of Illinois at Chicago

The high-energy density and low cost of lithium-ion batteries have created a revolution in personal electronics through music players, camcorders, laptops, tablets, smart phones and wearables, permanently changing the way we interact with people and information. We are at the threshold of similar potential transformations in transportation to electric cars and in the electricity grid to renewable generation, smart grids and distributed energy resources. These transformations require new levels of energy storage performance and cost. The potential of lithium-ion batteries and beyond-lithium-ion batteries to meet these performance and cost levels will be analyzed.

10:30 休憩

11:00 リチウムイオン電池の限界を押し上げるための取り組み

Stan_WhittinghamM. Stanley Whittingham, D.Phil., Director & Distinguished Professor, Chemistry and Materials, Binghamton University

Today's Li-ion batteries deliver far less than their theoretical energy density. Two materials approaches will be described: "Closing the Gap" on layered oxides such as NCA, and "Beyond Olivine" which pursues intercalating more than 1 Li per redox center.

11:30 実用化後のフィードバックに基づく電気自動車用電池の性能と安全性の向上

Rick_ChamberlainRick Chamberlain, Ph.D., CTO, Boston-Power

While improved battery performance remains a constant need in EV applications, today's Li-ion batteries demonstrate sufficient capability (driving distance, power, pack size and weight) to enable EVs and satisfy early market growth. This talk shares Boston-Power's recent advances in EV battery products based on our experience as both cell and pack provider to multiple vehicle classes.

 

12:00 演題は未定です

 
12:30 休憩

12:45 講演を聴きながらの昼食 (スポンサー募集) または各自で昼食

13:15 休憩

診断、モデリング、シミュレーション

14:00 議長の発言

George Crabtree, Ph.D., Director, Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory & Distinguished Professor of Physics, Electrical and Mechanical Engineering, University of Illinois at Chicago

14:05 リチウムイオン電池の老朽化に伴う電極間のクロストーク

Daniel_AbrahamDaniel Abraham, Ph.D., Engineer, Chemical Sciences and Engineering, Argonne National Laboratory

Cells containing layered-oxide-based positive electrodes and graphite-based negative electrodes are being cycled at high voltages (>4.3 V) to increase energy density. We detail the performance changes in these cells during cycling, with a particular focus on the cross-talk between electrodes. The performance consequences of this cross-talk, and methods to mitigate this cross-talk, will be highlighted.

14:35 電池の計測:透過型電子顕微鏡によるリチウムイオン電池および次世代電池内部の腐食の解明

Huolin_XinHuolin Xin, Ph.D., Staff Scientist, Electron Microscopy, Center for Functional Nanomaterials, Brookhaven National Laboratory

Tailoring the surface chemistry to enhance corrosion resistance lies at the heart of materials processing for corrosion control of structural materials. I show that the rate capacity of a large family of phase conversion anode materials, i.e., transition metal oxides, is dependent on the stochastic process of passivity breakdown which can be described by a Poisson model.

15:05 スポンサー提供のプレゼンテーション (発表者募集)

15:20 休憩

材料の製造と設計

15:50 リチウムイオン電池に対応する低価格でエネルギー密度の高い合金系負極の開発

Timothy Hatchard, Ph.D., Research Associate, Department of Chemistry, Dalhousie University

Since the introduction of the Li-ion battery in 1990, the materials used have remained relatively unchanged. Only recently has the LiCoO2 cathode begun to be replaced with NMC type materials. We summarize some of our efforts to explore nanostructured alloy anodes using relatively inexpensive and abundant starting materials, to keep costs down. We also discuss the role of functionality of polymer binders and the utility of some relatively inexpensive polymer binders.

16:20 A123による輸送機器電動化に対応する先進的な材料の開発:低電圧用途および高電圧用途向けのアプローチ

Derek_JohnsonDerek C. Johnson, Ph.D., Executive Director R&D, A123 Systems, LLC

To produce safe, high-energy density cells utilizing nickel-rich NCM cathodes and large-capacity anode materials, A123 is implementing the same crystal level doping and surface coating approach that has been effective for low-voltage material development. We focus on the high-power material development resulting in LiSBs with cold crank capabilities that surpass lead-acid batteries and high-energy advancements at the material and cell level to achieve energy densities approaching 300 Wh/kg and 600 Wh/L for EV applications.


低温充電

16:50 安全性の高い低温充電技術の可能性

Corey_LoveCorey T. Love, Ph.D., Materials Research Engineer, U.S. Naval Research Laboratory

Recent lithium-ion battery safety incidents have resulted from operation or charging at low temperatures. Slow mass transport and charge transfer kinetics at low temperature can lead to lithium dendrite formation on the anode surface. We have shown the onset time for dendrite nucleation and growth as well as dendrite morphology to be temperature-dependent processes. We highlight advanced materials, cell component selection and informed charging protocols as a combined strategy to overcome the dendrites issue observed at low temperature.

17:20 1日目終了、ディナーワークショップの登録手続き


17:30-20:30 ディナーワークショップ*

ワークショップ1:エネルギー貯蔵分野での技術革新:未来の電力を担う技術と市場 - 詳しい内容

Instructor: Chris Robinson, Research Analyst, Lux Research


ワークショップ2:電池の安全性に関する研修 - 詳しい内容

Instructor: Shmuel De-Leon, CEO, Shmuel De-Leon Energy, Ltd.

 

* 別途参加登録が必要です。   


11月2日 (水)

8:00 ブレックファストディスカッション

このセッションは、朝食をとりながら行われるグループ討論であり、各分野の専門家が中心となって展開される問題解決に向けた議論のなかでさまざまな立場の出席者がそれぞれのトピックに関連するアイデアや経験を披露する場となっており、今後他社との協力関係を発展させていくための出発点にもなります。

ブレックファストディスカッションの詳しい内容 

9:00 議長の発言

Corey T. Love, Ph.D., Materials Research Engineer, U.S. Naval Research Laboratory


9:05 基調講演:拡張現実感 (AR) やバーチャルリアリティ (VR) 技術の台頭で今後PCデバイスの電池に関する要求条件が変化する可能性

Jeremy_CarlsonJeremy Carlson, Battery Technology Engineer, Lenovo

Upcoming changes to the PC landscape could have significant impact on the battery requirements for mobile computing. Augmented reality/virtual reality will require more intensive processing and low latency communications for immersive environments. This discussion centers on how this could impact the battery requirements for the devices implementing these functions.

大容量カソード

9:35 先進的なリチウムイオン電池に対応する大容量カソード:課題と可能性

Jagjit Nanda, Ph.D., Senior Staff Scientist, Materials Science & Technology Division, Oak Ridge National Laboratory

This approach has numerous issues ranging from changes in the cathode interfacial structure to gas generation and electrolyte decomposition that can undermine their stability. We discuss recent advances in this topic. The second part discusses the recent advances in polyanionic and conversion type cathodes that offer great promise but still have fundamental material challenges that need to be addressed before practical application. This research is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy.

10:05 スポンサー提供のプレゼンテーション (発表者募集)

10:20 展示会ホールでの休憩、ポスター発表の見学

11:00 大容量カソード材料CAM-7をベースにしたエネルギー密度の高いリチウムイオンセル

Brian_BarnettBrian Barnett, Ph.D., Vice President, CAMX Power






Suresh Sriramulu, Ph.D., CTO, CAMX Power

Successful implementation of high-nickel cathode materials in Li-ion cells is recognized to be a key approach to ensure required increases in cell energy density for a wide range of applications. We highlight some challenges unique to high-nickel cathode material implementation in Li-ion cells and demonstrate successful strategies for overcoming these issues.

11:30 リチウムイオン電池に対応するニッケルベースの大容量層状酸化物カソード

Wei_TongWei Tong, Ph.D., Scientist/Principal Investigator, Lawrence Berkeley National Laboratory

Considering the vast interest in Ni-rich layered oxide cathodes, we recently revisited lithium-nickel oxide, an end member of Ni-rich layered oxides, which potentially removes the complexity due to a combination of different transition metals in NMC and NCA. I present our recent study on the synthesis of phase pure LiNiO2 and use it as a model compound to elucidate the intrinsic performance degradation mechanism originating from the high Ni content for those complex Rm layered oxides.

12:00 リチウム硫黄電池のカソードで生じるメソスケールな影響

Partha_MukherjeePartha Mukherjee, Ph.D., Assistant Professor, Mechanical Engineering Department, Texas A&M University

The lithium-sulfur (Li-S) battery is a promising energy storage technology, especially in the context of beyond-lithium-ion battery chemistry. However, a key challenge in this conversion chemistry based Li-S battery is the "shuttle effect" due to the transport of intermediate discharge product species between the cathode and anode, which causes active material loss and performance decay. We discuss the mesoscale implications resulting from the microstructure-transport-interface coupling in the Li-S battery cathode.

12:30 休憩

12:45 講演を聴きながらの昼食 (スポンサー募集) または各自で昼食

13:15 休憩

アノードの構造

14:00 議長の発言

Brian Barnett, Ph.D., Vice President, CAMX Power

14:05 シリコンアノードと低燃焼性電解質を使用した大型リチウムイオンセルの開発

James Wu, Ph.D., Research Scientist/Engineer, NASA Glenn Research Center

NASA is developing safe, high-energy and high-capacity Li-ion cell designs and batteries for future missions under its Advanced Space Power System (ASPS) project. Advanced cell components, such as high specific capacity silicon anodes and low flammable electrolytes, have been developed for improving cell-specific energy and enhancing safety. We present performance results of these various battery cells and discuss post-test cell analysis results.

14:35 耐食性ウルトラナノ結晶ダイヤモンドコーティング部品を使用した新たな長寿命リチウムイオン電池

Orlando_AucielloOrlando Auciello, Ph.D., Endowed Chair Professor, Materials Science, Engineering and Bioengineering, University of Texas at Dallas

Novel electrically conductive/corrosion-resistant nitrogen-deposed ultrananocrystalline diamond (N-UNCD) coating provides excellent chemically robust encapsulation of commercial natural graphite (NG)/copper (Cu) anodes for Li-ion batteries (LIB), providing a solution to the problem of LIBs' anode materials degradation. In addition, new preliminary data will be presented indicating that electrically conductive N-UNCD coatings can also be used to coat LIBs' anodes to protect them from Li-induced corrosion, and that insulating corrosion-resistant UNCD coating can be used to coat the inner walls of metallic LIBs' cases to also protect them from corrosion induced by the Li-based battery environment.

15:05 スポンサー提供のプレゼンテーション (発表者募集)

15:20 展示会ホールでの休憩、ポスター発表の見学

16:00 リチウム−電解質界面での樹枝状結晶の機構的抑制に対する基準

Venkat_ViswanathanVenkat Viswanathan, Ph.D., Assistant Professor, Mechanical Engineering, Carnegie Mellon University

A Li-metal anode that can reversibly cycle without forming dendrites is crucial for enabling next-generation battery chemistries like lithium-air and lithium-sulfur. Mechanical suppression of dendrite growth through solid or polymer electrolytes has shown potential for alleviating the problem. We present findings to fill the gaps in our current understanding of the mechanical suppression of dendrite growth at electrode-electrolyte interfaces by explicitly accounting for the anisotropic effects.

16:20 幅広い作動温度で使用可能な電解質の開発

Dee_StrandDee Strand, Ph.D., CSO, Wildcat Discovery Technologies

Automotive applications require batteries with adequate power down to -30℃ to start the vehicle. This presentation highlights development of electrolyte formulations with wide operating ranges on both graphite and lithium-titanate anodes. The audience will gain an appreciation for the competing solvent/SEI effects over wide temperature ranges. Over the last decade, many governments have implemented more stringent regulations on vehicle fuel economy and CO2 emissions. Start-stop vehicle engines, which shut off during stops for traffic or at a light, play an important role in achieving these targets.

16:40 性能向上を促す要因と製造加工費用についての理解を通じた現在および将来におけるアノード材料価格目標の達成

Bridget Deveney, Senior Research Associate, GraftTech International

Lithium-ion has the potential to convert transportation in the U.S. over to fully electric green technology. The major remaining barrier is not technical but cost. This talk details the performance drivers and tradeoffs of various types of anode materials and how the traditional graphite industry can bring capital equipment infrastructure and production-scale knowledge to produce low-cost, high-performance anode materials now and in the future.

知的財産戦略とその影響

17:00 成長著しい先進電池業界のための知的財産戦略

Dan_AbrahamDan Abraham, Ph.D., Vice President, Science and Business Strategy, MPEG LA

Intellectual Property has become a valuable and contentious asset in the advanced battery industry. Drawing upon lessons from other industries, we address how IP creation and enforcement may affect a burgeoning industry. We explore: strategies for avoiding battery IP wars in a manner that fosters industry-wide development and growth, and new opportunities for making IP rights widely available while rewarding IP owners for their innovation.

17:00 Battery Safety Conferenceの登録手続き

17:30 展示会ホールでの歓迎レセプション、ポスター発表の見学

18:30 Lithium Battery Power閉幕


* 不測の事態により、事前の予告なしにプログラムが変更される場合があります。


Choose your language
Traditional Chinese
Simplified Chinese
Korean
English

カタログ(PDF)
イベントカレンダー
エネルギー/環境関連の国際会議
メール配信サービス
メール配信サービス

Cambridge Innovation Institute

日本語公式サイト運営 : The Knowledge Foundation代理店 株式会社グローバル インフォメーション