Cambridge Healthtech Institute's 4th Annual

Protein Expression System Engineering

( タンパク質発現系のエンジニアリング )

遺伝子から細胞株へ

2018年5月3-4日 | World Trade Center | マサチューセッツ州ボストン

 

The 4th annual Protein Expression System Engineering conference examines the functioning of the cellular machinery harnessed during protein biosynthesis, and how to engineer hosts to efficiently express a protein of interest. The intricate steps required to achieve properly folded protein will be discussed, including verification and sequence analysis of the gene, codon optimization, vector construction, selecting and optimizing a clone, and selecting a host system. In addition, engineering host cells to sustain expression for longer time periods will be discussed, along with overcoming cellular stress response to produce and secrete functionally active recombinant proteins.


Final Agenda

Recommended Short Course(s)*

SC12: Transient Protein Production in Mammalian Cells

Richard Altman, MS, Scientist, Protein Technologies, Amgen

Henry C. Chiou, PhD, Associate Director, Cell Biology, Life Science Solutions, Thermo Fisher Scientific


*Separate registration required.

5月3日 (木)

次世代の大腸菌

12:00 pm Registration

12:35 Luncheon in the Exhibit Hall with Poster Viewing

1:40 Chairperson's Remarks

Shahram Misaghi, PhD, Senior Scientist, Early Stage Cell Culture, Genentech, Inc.

1:50 iML1515, A Computable Knowledge-Base of Escherichia coli Metabolism and its Structural Proteome

Colton_LloydColton Lloyd, PhD Candidate, Bioengineering, University of California, San Diego

This talk will introduce the latest genome-scale model of E. coli metabolism, iML1515, which models activity of 1,515 metabolic genes and provides a link to the 3D structure of each protein. In addition, it will expand on how the model can be applied to extract knowledge from emerging big data types in biology and to analyze differences in protein structural characteristics within the E. coli species.

2:20 Next-Gen Methods for Optimizing Biological Systems

Eric_KelsicEric Kelsic, PhD, Staff Scientist, Wyss Institute, Harvard University

I will present work optimizing codon usage and protein function using high-throughput synthesis and DNA sequencing. To understand the determinants of codon choice in E. coli, we generated 12,726 in situ codon mutants in the Escherichia coli essential gene infA and measured their fitness with MAGE-seq. Our results shed light on natural codon distributions and should improve engineering of gene expression for synthetic biology applications. I will also share recent work optimizing AAV capsid variants for improved in vivo DNA delivery.

2:50 Multi-Omics Integration Accurately Predicts Cellular State in Unexplored Conditions for Escherichia Coli

Minseung_KimMinseung Kim, MSc, Scientist, Computer Science, UC Davis Genome Center, University of California, Davis

We develop semi-supervised normalization pipelines and perform experimental characterization to create Ecomics, a multi-omics compendium for Escherichia coli. We then use this resource to train a multi-scale model that integrates four omics layers to predict genome-wide concentrations and growth dynamics. We demonstrate the predictive performance of the model for the various omics layers far exceeds various baselines. This work provides an integrative framework of omics-driven predictive modelling that is broadly applicable to guide biological discovery.

 

3:20 Presentation to be Announced

3:50 Networking Refreshment Break


4:20 KEYNOTE PRESENTATION: Establishing Cell-Free Systems for Therapeutic Glycoprotein Synthesis

Michael_JewettMichael Jewett, PhD, Charles Deering McCormick Professor of Teaching Excellence, and Associate Professor, Chemical and Biological Engineering, Northwestern University

Protein glycosylation is integrally involved in human biology and disease. Unfortunately, the study of glycans in native systems and the intentional manipulation of protein glycosylation patterns remain limited by the tools available for biochemical characterization of glycosylation enzyme activities and the synthesis of defined glycoforms. To address these limitations, we here describe a novel cell-free glycoprotein synthesis technology. This makes possible new application areas in the production of glycoprotein therapeutics.

4:50 Combining Metabolic and Process Engineering Strategies to Improve Recombinant Glycoprotein Production and Quality

Oliver_HenryOlivier Henry, PhD, Associate Professor, Chemical Engineering, Ecole Polytechnique de Montreal

The accumulation of lactate and ammonia remains a major factor limiting the performance of fed-batch cell culture processes. These by-products have detrimental effects on production yields and can also negatively impact product quality. By combining process and cellular engineering strategies, we demonstrate that significant concomitant reductions in lactate and ammonia accumulation can be achieved in fed-batch cultures, leading to increased product titers without impacting product quality.

5:20 End of Day

5:20 Registration for Dinner Short Courses

Recommended Dinner Short Course(s)*

SC12: Transient Protein Production in Mammalian Cells

Richard Altman, MS, Scientist, Protein Technologies, Amgen

Henry C. Chiou, PhD, Associate Director, Cell Biology, Life Science Solutions, Thermo Fisher Scientific


*Separate registration required.

5月4日 (金)

8:00 am Morning Coffee

次世代のエンジニアリング

8:30 Chairperson's Remarks

Olivier Henry, PhD, Associate Professor, Chemical Engineering, Ecole Polytechnique de Montreal

8:35 Engineering an Expression System for the Production of Biotherapeutics Mimicking the Endogenous Counterpart

Lars_StocklLars Stockl, PhD, Senior Director, R&D, Glycotope GmbH

Some biopharmaceuticals, such as bispecific constructs or complex glycoproteins, remain very challenging in recombinant production. We present data from two case studies of host cell engineering, clone and upstream perfusion development for products that were produced in the human GlycoExpress cell line, which overcomes productivity and quality limitations compared to rodent cell lines.

9:05 Mammalian Display: Antibody Discovery, Affinity Maturation and Developability Screening in IgG Format

Michael_DysonMichael Dyson, PhD, CTO, Antibody Engineering, IONTAS, Ltd.

Using directed integration of antibody genes by CRISPR/Cas9 and TALE nucleases, we have constructed large libraries in mammalian cells containing a single antibody gene/cell. This has permitted construction of millions of monoclonal stable cell lines displaying IgG antibodies on their surface from which antibodies have been selected by flow cytometry for specificity, binding affinity, species cross-reactivity and expression level. Expression in production cell lines also enables high-throughput developability screening.

9:35 Sponsored Presentation (Opportunity Available)

10:05 Networking Coffee Break

CHO細胞エンジニアリングの利用

10:35 An Automated Metabolic Modeling and Analysis Pipeline for Chinese Hamster Ovary Clone Selection and Process Optimization

Tobias_GrosskopfTobias Grosskopf, PhD, Scientist, Cell Culture Research, Roche Diagnostics GmbH


11:05 Engineering of Protein Secretion Using Systems Biology Models

Nathan Lewis, Systems Biology & Cell Engineering, University of California, San Diego

The complexity of biotherapeutics and their host cells pose unique challenges to drug production. To address this, we are mapping out the complex cellular pathways controlling protein synthesis and secretion in CHO cells. Here, I demonstrate how this information provides insights into the protein-production capacity of CHO cells, and how metabolic needs differ across products. Furthermore, these resources allow us to control the production of toxic by-products and thereby improve bioprocess phenotypes.

11:35 PKM1 Expression Appears to Drive Lactogenic Behavior in CHO Cell Lines, Triggering Lower Viability and Productivity; A Case Study

Shahram_MisaghiShahram Misaghi, PhD, Senior Scientist, Early Stage Cell Culture, Genentech, Inc.

Lactogenic behavior displayed by some CHO cell lines during manufacturing may result in a decline in viability, productivity, and alterations in product quality. We identified two lactogenic cell lines expressing different antibody molecules during the cell line development (CLD) process. These lactogenic behaviors were differentially mitigated through process development by optimizing either nutrient feeds or culture pH, depending on the cell line. CRISPR/Cas9 mediated knockout of the PKM-1 isoform abolished lactate accumulation even under lactogenic conditions.

12:05 pm Mitochondrial-Derived Small RNAs as Powerful Tools to Boost CHO Cell Productivity

Lisa_Alexandra_PieperLisa Alexandra Pieper, PhD, Postdoctoral Researcher, Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG

In this study, we show that ectopic expression of a human mitochondrial-derived small RNA (mitosRNA-1978) in IgG expressing CHO cells strongly improved specific productivity by functioning in a microRNA-like fashion. By next generation sequencing, we identified Ceramide Synthase 2 (CerS2) and Tbc1 domain family member 20 (Tbc1D20) as target genes of mitosRNA-1978. Knockdown of CerS2 and Tbc1D20 in CHO-IgG cells resulted in dramatically increased antibody production, recapitulating the mitosRNA-1978 phenotype.

12:35 Luncheon Presentation (Sponsorship Opportunity Available) or Enjoy Lunch on your Own

1:05 Networking Refreshment Break

タンパク質発現を目的とした遺伝情報の書き換え

1:35 Chairperson's Remarks

Eric Kelsic, PhD, Staff Scientist, Wyss Institute, Harvard University

1:40 Development and Applications of Universal Platforms for Genetic Code Expansion

Abhishek_ChatterjeeAbhishek Chatterjee, PhD, Assistant Professor, Chemistry, Boston College

The ability to site specifically incorporate unnatural amino acids (UAAs) into proteins in living cells has emerged as a powerful method to probe and manipulate protein structure and function. We are expanding the scope of this technology by establishing platforms that enable facile introduction of previously inaccessible chemical functionalities into the genetic code of both bacteria and eukaryotes.

2:10 Development of DNA-Encoded Chemical Libraries at Pfizer

Anokha_RatnayakeAnokha S. Ratnayake, PhD, Principal Scientist, Pfizer Global R&D Groton Labs

The design and development of successful DNA-encoded libraries (DELs) require implementation of reliable analytical techniques and assays for on-DNA reaction monitoring, validation of on-DNA chemistries and assuring library quality (QC). This presentation will focus on the background on DNA-encoded library technology (DELT), elements of library design and the details of on-DNA chemistry validation, highlighting the associated analytical development processes.

2:40 Codon and Codon Pair Optimization in Synthetic Gene Design

Dimitris_PapamichailDimitris Papamichail, PhD, Assistant Professor, Computer Science, The College of New Jersey

Advances in de novo synthesis of DNA and computational gene design methods make possible the customization of genes and gene libraries by direct manipulation of features such as codon and codon context bias. In this talk, I will present computational methods to design genes with desired codon and codon context content, and tools that allow for the direct manipulation of protein-coding genes.

3:10 Quantity or Quality? Enhancing Co-Translational Protein Folding with Sub-"Optimal" Synonymous Codons

Patricia_ClarkPatricia L. Clark, PhD, Rev. John Cardinal O'Hara C.S.C. Professor, Biochemistry, University of Notre Dame

Historically, "optimizing" a gene for heterologous expression consisted of substituting rare codons with synonymous common codons. This strategy can increase the amount of protein produced but may adversely affect the yield of native, active protein. This talk will focus on rare codon distribution in coding sequences and rational strategies for rare codon placement to enhance folding yield.

3:40 End of Conference

* 不測の事態により、事前の予告なしにプログラムが変更される場合があります。

Choose your language
Traditional Chinese
Simplified Chinese
Korean
English