Cambridge Healthtech Institute's Fifth Annual

Optimizing Expression Platforms

( 発現プラットフォームの最適化 )

Tools for Effective Expression, Production & Purification

2018年1月11日 - 12日



Final Agenda


7:45 am Registration and Morning Coffee

Transient Protein Production

8:15 Chairperson's Opening Remarks

Richard Altman, MS, Scientist, Protein Technologies, Amgen


8:20 Advances in Protein Purification

John Kawooya, Ph.D., Director, Biologics Optimization, Amgen

9:00 Transient Antibody Production: How to Generate Higher Titers

Saurabh_SenSaurabh Sen, Ph.D., Principal Scientist, Biotherapeutics Discovery, Boehringer Ingelheim

The presentation covers topics on optimizing efficient expression and production even while improving quantity and quality and minimizing time and cost. Our Transient Gene Expression (TGE) technology for transient protein production (TPP) has significant advantages by using lesser amounts of coding DNA by 70-80% -- and using 50% less transfection reagent. For research purposes, we have an improved TGE protocol with significant advantage of speed, higher yields and lower costs.

9:30 Advances and Challenges in Transient Plant-Based Therapeutic Protein Production

Karen_McDonaldKaren McDonald, Ph.D., Professor, Chemical Engineering, University of California, Davis

Plants are an excellent host for transient production of therapeutic proteins due to their high expression levels, rapid development timescales, short batch production times, flexibility, robustness, scalability, biosafety, and economics. A variety of transient expression systems/platforms and glycoengineered plant host lines have been developed and commercial-scale facilities have been built. Current work in the area of transient production of recombinant proteins in plant cell suspension cultures will be presented.

10:00 Coffee Break in the Exhibit Hall with Poster Viewing

11:00 Fundamentals of Baculovirus Expression and Applications

Chris_KempChristopher Kemp, Ph.D., President, Kempbio

11:30 Presentation to be Announced

12:00 pm Session Break

12:15 Luncheon Presentation I: New Tools for Screening & Harvesting Solutions for CHO & HEK293 Cells, for Both Transient and Stable Cell

Sam_EllisSam Ellis, Vice President, Thomson Instrument Company

Evaluation of different transfection tools, product quality, and titer for both CHO and HEK293 cell lines. Data will be presented on techniques and technology that mimic large-scale bioreactors in non-controlled devices from 1mL-3L. Technologies presented include well plates and culture tube systems with incorporated filtration methodology. A new direct harvesting technique will also be introduced that eliminates centrifugation while maintaining 0.2um sterile filtration. All of these tools will be presented with case studies from scientists.

12:45 Luncheon Presentation II (Sponsorship Opportunity Available)

1:15 Ice Cream Break in the Exhibit Hall with Poster Viewing


2:00 Chairperson's Remarks

Saurabh Sen, Ph.D., Principal Scientist, Biotherapeutics Discovery, Boehringer Ingelheim

2:05 A High-Density CHO-S Transient Transfection System: Comparison of ExpiCHO and Expi293

Tadas_PanavasTadas Panavas, Ph.D., Associate Director, Discovery Research, Alexion Pharmaceuticals

Chinese Hamster Ovary (CHO) cells are the principal mammalian host used for stable cell line generation and biotherapeutic protein production. Until recently, production of milligrams to grams of protein in CHO transient systems was challenging. To overcome such challenges, we evaluated the ExpiCHO system, a high-density CHO-S transient transfection system, and compared it to the Expi293 and FreeStyle MAX CHO transient systems. Detailed analysis was performed on protein titer, monodispersity, enzyme activity, and posttranslational modifications.

2:35 Transient Protein Production: Harmonizing the Process from Construct Generation through Protein Characterization

Richard_AltmanRichard Altman, MS, Scientist, Protein Technologies, Amgen

A robust, flexible transient protein production facility provides critical support to drug discovery efforts. We review the ongoing evolution of our protein production endeavors focusing on two critical components. The first is the strategic assembly of mammalian expression "tools" that gives us a toolbox capable of expressing diverse and challenging candidate proteins. The second is the harmonization of the entire protein production process thereby reducing turnaround times and increasing throughput.

3:05 Sponsored Presentation (Opportunity Available)

3:35 Refreshment Break in the Exhibit Hall with Poster Viewing

4:15 Stable CHO Pool Expression on Steroids (Using Transposon-Mediated Gene Integration)

Gavin_BarnardGavin Barnard, Ph.D., Group Leader, Biotechnology Discovery Research, Eli Lilly and Company

We describe the development and application of a transposon-mediated gene integration system (TMI) to create stable CHO pools. We demonstrate the superiority of TMI relative to random gene integration (RI), the current method of choice used by the biopharmaceutical industry. CHO pools yielding mAb titers as high as 7.6 g/L were generated using TMI. This represents a 3- to 10-fold increase relative to RI for a panel of molecules.

4:45 The Stability of CHO Genome: Essential for Cell Line Characterization or Not?

Noriko_YamanoNoriko Yamano, Ph.D., Senior Scientist, Manufacturing Technology Association of Biologics; Guest Academic Staff, Graduate School of Engineering, Osaka University

The chromosomes in CHO cells frequently cause genomic variations, due to genetic instability. Distribution and stability of chromosomes were examined in CHO-DG44 cells, and two cell lines expressing different numbers of chromosomes were isolated from the original CHO-DG44 cell line to investigate the effect of aneuploid cells on recombinant protein production. In addition, gene expression profiles between cells with disparate chromosome numbers have been compared by mRNA-seq analysis.

5:15 Automated Protein Production with the ExpiCHO Expression System

Joseph_DuqueJoseph Duque, Senior Scientist, Merck Research Laboratories

Combining the ExpiCHO protein expression system with automation enables a high-throughput protein production platform that can be utilized to generate a variety of proteins in a short amount of time. Here we discuss the automated systems implemented to minimize the manual steps involved in the protein production process as well as the process development findings in the efforts to try to maximize protein expression from the ExpiCHO system.

5:45 Close of Day


8:00 am Registration

8:00 BuzZ Sessions with Continental Breakfast

Protein therapeutics is a fast-growing global market. As the science improves, so does the complexity of the R&D organization. Ensuring product quality plus speed to market requires insights from stakeholders working across the stages of protein science R&D. Join experts representing this PepTalk pipeline, peers, and colleagues for an interactive roundtable discussion. Topics include highlights from the week's presentations, new technologies and strategies, challenges, and future trends.

Table Moderator: Richard Altman, MS, Scientist, Protein Technologies, Amgen

Table Moderator: Bjorn Voldborg, Director, CHO Cell Line Development, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark


Technologies to Establish Efficient Production & Purification

9:00 Chairperson's Remarks

Gabriel Rocklin, Ph.D., Senior Fellow, Biochemistry & Bioengineering, University of Washington

9:05 Platformization of Multi-Specific Protein Engineering I: From in silico Design and Bulk Modular Cloning to Automated Deconvolution of Variant Libraries

Joerg Birkenfeld, Ph.D., Section Head, High Throughput Biologics, R&D Biologics Research/Protein Therapeutics, Sanofi-Aventis Deutschland GmbH

The success rate to identify a multi-specific lead molecule with favorable drug-like properties increases with the number of variants tested. We report here the establishment of a novel, automated platform process for the fast generation of large panels of multi-specific variants (up to 10,000). Our high-throughput process integrates emerging cloning technologies with state-of-the-art automation and workflow supporting bioinformatics based on Genedata Biologics Database.

9:35 High-Throughput Methods for Protein Stability Prediction and Formulation Challenges Identification

Smita Raghava, Ph.D., Senior Scientist, Sterile Formulation Sciences, Merck & Co.

Successful development of biologics requires development of orthogonal tools to meet the challenge of rapidly and accurately assessing protein solution stability using limited material. This presentation will focus on combination of high-throughput technologies and assays for formulation and drug product development of biologics, such as monoclonal antibodies (mAbs) and mAb-based modalities. The overview of tools, their novel implementation, and relationship to commonly conducted "stability studies" will be further discussed using examples of high-throughput workflows, pre-formulation screening, and formulation development/optimization.

10:05 HTP Method for Affinity Determination in Complex Matrices by Solution Equilibrium Analysis Using Meso Scale Discovery Technology

Eilyn R. Lacy, Ph.D., Principal Scientist, Janssen BioTherapeutics (JBIO), Janssen Research & Development, LLC

10:35 Coffee Break with a Poster Pavilion

PepTalk is proud to support and recognize the protein scientists of tomorrow during the Poster Pavilion. This time has been set aside to view the Student Fellowship posters and interact with presenters one on one. This opportunity gives job seekers the chance to share their expertise with future/potential employers or develop contacts to further their research.

11:15 High-Throughput Automations and Optimizations for Improved Binder Generation and Validation

Jonas Schaefer, Ph.D., Head, High-Throughput Binder Selection Facility, Biochemistry, University of Zurich

While recombinant binder selection pipelines by now work in rather high-throughput, the screening of suitable affinity reagents and especially the validation of their essential features for the final applications is still laborious and time-intensive. To optimize the efficiency of these processes, we have improved already existing and developed novel methods to efficiently test candidates for their suitability, e.g., regarding their specificity.

11:45 High-Throughput Characterization of Hydrolytic Enzymes in Low Volume and Closed Systems

Nigel F. Reuel, Ph.D., Assistant Professor, Chemical and Biological Engineering, Iowa State University

Hydrolytic enzymes play a significant role in biologic and synthetic processes. The ability to better characterize these enzymes would enable shorter development times and better products. This talk will detail two recent developments for hydrolytic enzyme characterization: 1) a carbon nanotube-based optical sensor that allows for quantitative measurement in <20ul volumes, and 2) a resonant antenna sensor that passively transmits its response in the 1-100MHz range, enabling detection within closed, opaque systems.

12:15 pm Conference Wrap-Up

Richard Altman, MS, Scientist, Protein Technologies, Amgen

Haiyan Jiang, Ph.D., Principal Scientist, Biologics Research, Janssen BioTherapeutics, Janssen R&D

Diane Paskiet, MS, Director of Scientific Affairs, Scientific Affairs and Technical Services, West Pharmaceutical Services

Bjorn Voldborg, Director, CHO Cell Line Development, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark

Moritz von Stosch, Ph.D., Senior Manager, Fermentation, Technical R&D, GSK Vaccines


12:45 Close of Conference

* 不測の事態により、事前の予告なしにプログラムが変更される場合があります。